Carnegie Mellon College of Engineering  
ChemE Home  
Alumni
 
 
 



 
People
 

Neil M. Donahue - Publications

[1] Source apportionment of molecular markers and organic aerosol – 3. food cooking emissions. Environ. Sci. Technol. , (A. L. Robinson, R. Subramanian, N. M. Donahue, A. Bernardo-Bricker, andW.F. Rogge) in press.

[2] Source apportionment of molecular markers and organic aerosol – 2. biomass smoke. Environ. Sci. Technol. ,(A.L. Robinson,R. Subramanian,N.M. Donahue,A. Bernardo-Bricker,andW.F. Rogge) in press.

[3] Source apportionment of molecular markers and organic aerosol – 1. methodology for visually comparing source profiles and ambient data. Environ. Sci. Technol. , (A. L. Robinson, R. Subramanian, N.M. Donahue,A. Bernardo-Bricker, andW.F. Rogge) in press.

[4] Secondary organic aerosol formation from limonene ozonolysis: Homogeneous and heterogeneous influences as a function of NOx. J. Phys. Chem. A , (J. Zhang, K. E. HuffHartz, R. K.Pathak, S. N. Pandis, and N. M. Donahue)in press.

[5]Vehicular contributiontothe ambientorganic carbonin Pittsburgh,PA:Effectsofvarying sourceprofiles and seasonal trends in ambient marker concentrations. Atmos. Environ. , (A. L. Robinson, R. Subramanian,A. Bernardo-Bricker,W.F. Rogge, andN.M. Donahue) in press.

[6] Constrainingthe mechanismand kineticsofOH+NO2 and HO2 +NO using the multiple-well master equation. J. Phys. Chem. A 110, 6898–6911 (J. Zhang and N. M. Donahue) 2006.

[7] Investigation of α-pinene + ozone secondary organic aerosol formation at low total aerosol mass. Environ. Sci. Technol. 40, 3536–3543 (A. A. Presto and N. M. Donahue) 2006.

[8] The temperature-dependence of rapid low temperature reactions: Experiment, understanding and prediction. Faraday Disc. 133,inpress(I.W.M.Smith,A.M.Sage,N.M. Donahue,E.Herbst,andI.H. Park)2006.

[9] Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40, 2635– 2643(N.M. Donahue,A.L. Robinson,C.O. Stanier,andS.N.Pandis) 2006.

[10] Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. J. Geophys. Res. 11, D03302 (A. L. Robinson, N. M. Donahue, and W. F. Rogge) 2006, doi:10.1029/2005JD006265.

[11] Cloud condensation nuclei activation of limited solubility organic aerosol. Atmos. Environ. 40, 605– 617 (K. E. Huff Hartz, J. E.Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N.Pandis) 2006.

[12] Deconstructing experimental rate constant measurements: Obtaining intrinsic reaction parameters, kineticisotopeeffects,and tunnelingcoefficientsfrom kineticdataforOH+methane, ethaneandcyclohexane. J. Photochem. Photobio. 176, 238–249 (A. M. Sage and N. M. Donahue) 2005.

[13] Secondary organic aerosol production from terpene ozonolysis: 2. Effect of NOx concentraton. Environ. Sci. Technol. 36, 7046–7054 (A. A. Presto, K. E. HuffHartz, and N. M. Donahue) 2005.

[14] Secondary organic aerosol production from terpene ozonolysis: 1. Effect of UV radiation. Environ. Sci. Technol. 39, 7036–7045 (A. A. Presto, K. E. HuffHartz, and N. M. Donahue) 2005.

[15] Criticalfactors determiningthevariationinSOAyields from terpene ozonolysis:Acombinedexperimental and computational study. Faraday Disc. 130, 295–309 (N. M. Donahue, K. E. Huff Hartz, B. Chuong,A.A. Presto,C.O. Stanier,T. Rosenørn,A.L. Robinson, andS.N.Pandis) 2005.

[16] Competitive oxidation in atmospheric aerosols: The case for relative kinetics. Geophys. Res. Lett. 32, L16805(N.M. Donahue,A.L. Robinson,K.E. HuffHartz,A.M. Sage, andE.Weitkamp) 2005.

[17] Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol. J. Geophys. Res. 110, D14208(K.E. HuffHartz,T. Rosenørn,S.R. Ferchak,T.M. Raymond,M. Bilde, N.M. Donahue, andS.N.Pandis) 2005.

[18] Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions. J. Geophys. Res. 110, D07S07(D.B. Millet,N.M. Donahue,S.N.Pandis,A. Polidori,C.O. Stanier,B.J.Turpin,andA.H. Goldstein) 2005.

[19] On the mechanism for nitrate formation via the peroxy radical+ NO reaction. J. Phys. Chem. A 108, 9082–9095(J. Zhang,T. Dransfield,andN.M. Donahue) 2004.

[20] Ozonolysis fragment quenching by nitrate formation: The pressure dependence of prompt OH radical formation. J. Phys. Chem. A 108, 9096–9104 (A. A. Presto and N. M. Donahue) 2004.

[21] Cycloalkene ozonolysis: Collisionally mediated mechanistic branching. J. Am. Chem. Soc. 126, 12363–12373 (B. Chuong, J. Zhang, and N. M. Donahue) 2004.

[22] Fitting multiple datasetsin kinetics: n-butane+OH products. Int. J. Chem. Kin. 36,259–272 (N. M. Donahue and J. S. Clarke) 2004.

[23] Hydrogen and helium pressure broadening of water transitions in the 380-600 cm 1 region. J. Spect. Quant. Rad. Trans. 83, 183–191 (D.W. Steyert,W.F.Wang, J. M. Sirota, N. M. Donahue, and D. C. Reuter) 2004.

[24] Reaction barriers: Origin and evolution. Chem. Rev. 103, 4593–4604 (N. M. Donahue) 2003.

[25] Product analysis of the OH oxidation of isoprene and 1,3-butadiene in the presence of NO. J. Geophys. Res. A 107, 4268 (M. Sprengnether, K. L. Demerjian, N. M. Donahue, and J. G. Anderson) 2002.

[26] Gas-phase ozonolysis of alkenes: formation of OH from anti carbonyl oxides. J. Am. Chem. Soc. 124, 8518–8519(J.H. Kroll,V.J.Cee,N.M. Donahue,K.L. Demerjian,andJ.G. Anderson) 2002.

[27] Pressure broadening coefficientsof rotational transitionsofwaterinthe 380-600cm 1 range. J. Spect. Quant. Rad. Trans. 72, 775–782 (D. W. Steyert, W. F. Wang, D. C. Reuter, M. Sirota, and N. M. Donahue) 2002.

[28] Accurate, direct measurements of OH yields from ozone-alkene reactions using the Harvard HOx instrument. Geophys. Res. Lett. 28, 3863–3866 (J. H. Kroll, T. F. Hanisco, N. M. Donahue, J. G. Anderson, and K. L. Demerjian) 2001.

[29] Mechanism of HOx formationinthegas-phase ozone-alkene reaction: II. promptversus thermal dissociation of carbonyl oxides to form OH. J. Phys. Chem. A 105, 4446–4457 (J. H. Kroll, S. Shahai, J. Anderson, K. L. Demerjian, and N. Donahue) 2001.

[30] Revisiting the Hammond postulate: The role of reactant and product ionic states in regulating barrier heights, locations, and frequencies. J. Phys. Chem. A 105, 1489–1497 (N. M. Donahue) 2001.

[31] Near-field influenceon barrierevolutionin symmetric atom transfer reactions:A new modelfortwostate mixing. J. Phys. Chem. A 105, 1498–1506 (H. A. Rypkema, N. M. Donahue, and J. G. Anderson) 2001.

[32] High pressure flow reactor product study of the reactions of HOx + NO 2 : The role of vibrationally excitedintermediates. J. Phys. Chem. A 105, 1507(T. Dransfield,N. Donahue,andJ. Anderson)2001.

[33] Constraining the mechanism of OH + NO2 using isotopically labeled reactants: Experimental evidence for HOONO formation. J. Phys. Chem. A 105, 1515–1520 (N. M. Donahue, M. K. Dubey, R. Mohrschladt,T.J. Dransfield, andJ.G. Anderson) 2001.

[34] Mechanism of HOx formation in thegas-phase ozone-alkene reaction: I. direct, pressure-dependent measurements of OH yields. J. Phys. Chem. A 105, 1554–1560 (J. H. Kroll, J. S. Clarke, N. M. Donahue, J. Anderson, and K. L. Demerjian) 2001.

[35] Anexperimental method for testing reactivity models:A high-pressure discharge-flow studyofH + alkene and haloalkene reactions. J. Phys. Chem. A 104, 5254 – 5264 (J. S. Clarke, J. H. Kroll, H. A. Rypkema, N. M. Donahue, and J. G. Anderson) 2000.

[36] Multipleexcited statesinatwo-state crossing model: Predicting barrierheightevolutionforH+alkene addition reactions. J. Phys. Chem. A 104,4458 – 4468(J.S. Clarke,H.A.Rypkema,J.H. Kroll,N.M. Donahue, and J. G. Anderson) 2000.

[37]Fourier transform ultraviolet spectroscopyoftheA 2 Π3/2 X2Π3/2 transition of BrO. J. Phys. Chem. A 103, 8935–8945(D.M.Wilmouth,T.F. Hanisco,N.M. Donahue,andJ.G. Anderson) 1999.

[38]Temperature and pressure dependent kineticsof thegas-phase reactionof thehydroxyl radical with nitrogen dioxide. Geophys. Res. Lett. 26,687–690(T. Dransfield,K. Perkins,N. Donahue,J. Anderson, M. Sprengenther, and K. Demerjian) 1999.

[39]Testing frontier orbital control: OH+ ethane, propane,andcyclopropanefrom180K to360K. J. Phys. Chem. A 102, 9847–9857 (J. Clarke, J. Kroll, N. Donahue, and J. Anderson) 1998.

[40] Predicting radical-molecule barrier heights: The role of the ionic surface. J. Phys. Chem. A 102, 3923–3933 (N. M. Donahue, J. S. Clarke, and J. G. Anderson) 1998.

[41] New rate constants for ten OH alkane reactions from 300 to 400 K: An assessment of accuracy. J. Phys. Chem. A 102, 3121–3126 (N. M. Donahue, K. L. Demerjian, and J. G. Anderson) 1998.

[42] Direct observation of OH production from the ozonolysis of olefins. Geophys. Res. Lett. 25, 59–62 (N. M. Donahue, J. H. Kroll, J. G. Anderson, and K. L. Demerjian) 1998.

[43] Comment on: “The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopyduring the POPCORN field campaign,” by Hofzumahaus et al., and “Intercomparison of tropospheric OH radical measurements by multiple folded long path laser absorption and laser induced fluorescence,” by Brauers et al. Geophys. Res. Lett. 24, 3039–3038 (E. J. Lanzendorf,T. R. Hanisco, N.M. Donahue, andP.O.Wennberg) 1997.

[44] High pressure flow study of the reactions OH + NOx HONOx: Errors in the falloff region. J. Geophys. Res. 102, 6159–6168 (N. M. Donahue, M. Dubey, R. Mohrschladt, K. L. Demerjian, and J. G. Anderson) 1997.

[45] Isotope specific kineticsofhydroxyl radical (OH) withwater(H2O):Testing modelsof reactivity and atmospheric fractionation. J. Phys. Chem. A 101, 1494–1500 (M. Dubey, R. Mohrschladt, N. M. Donahue, and J. G. Anderson) 1997.

[46] Reaction modulation spectroscopy: A new approach to quantifying reaction mechanisms. J. Phys. Chem. 100, 17855–17861 (N. M. Donahue, K. Demerjian, and J. Anderson) 1996.

[47] Free radical kineticsathigh pressure:Amathematical analysisoftheflow reactor. J. Phys. Chem. 100, 5821–5838 (N. M. Donahue, J. S. Clarke, K. L. Demerjian, and J. G. Anderson) 1996.

[48] Ozone observations and a model of marine boundary layer photochemistry during SAGA 3. J. Geophys. Res. 97, 16955–16968 (A. M. Thompson, J. E. Johnson, A. L.Torres,T. S. Bates, K. C.Kelly, E. Atlas, J.P. Greenberg, N. M. Donahue, S. A. Yvon, E. S. Saltzman, B. G. Heikes, B.W. Mosher, A.A. Shashkov, andV.I.Yegorov) 1993.

[49]Insitu nonmethanehydrocarbon measurementsonSAGA3. J. Geophys. Res. 97,16915–16932 (N. M. Donahue and R. G. Prinn) 1993.

[50] Nonmethanehydrocarbon chemistryinthe remotemarine boundarylayer. J. Geophys. Res. 95,18387– 18411 (N. M. Donahue and R. G. Prinn) 1991.

[51] Relationship between peroxyacetyl nitrate(PAN)and nitrogen oxidesinthe clean troposphere. Nature 318, 347–349 (H. L. Singh, B. Ridley, J. Shetter, N. M. Donahue,F. Fehsenfeld, D.Fahey, D.Parish, E.Williams,S. Liu,G. Hebler,, andP. Murphy) 1985.

 

 
 
 
ChemE is a department of the College of Engineering at Carnegie Mellon University
© 2005